Pavages: Quand l'Art rencontre les Maths

S. Simao

Lycée Monte-Cristo, Allauch

Venelles, 15 Novembre 2025

Plan

- Introduction
- Pavages Périodiques du Plar
- Pavages Apériodiques
- 4 Pour aller plus loin

Pourquoi j'ai choisi ce thème?

 De part mes origines sud de l'Espagne et du Portugal où les pavages sont érigés sous forme d'art.

Pourquoi j'ai choisi ce thème?

- De part mes origines sud de l'Espagne et du Portugal où les pavages sont érigés sous forme d'art.
- On voyage de la géométrie euclidienne enseignée au collège jusqu'à des maths actuelles avec plein de problèmes ouverts et d'applications.

Pourquoi j'ai choisi ce thème?

- De part mes origines sud de l'Espagne et du Portugal où les pavages sont érigés sous forme d'art.
- On voyage de la géométrie euclidienne enseignée au collège jusqu'à des maths actuelles avec plein de problèmes ouverts et d'applications.

Plan

- Introduction
- Pavages Périodiques du Plan
- Pavages Apériodiques
- 4 Pour aller plus loin

Qu'est ce qu'un pavage périodique du Plan?

Qu'est ce qu'un pavage périodique du Plan?

Une première définition

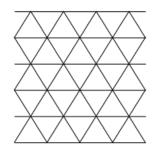
On appelle pavage du plan, tout recouvrement du plan par des tuiles de même forme sans chevauchement et trou.

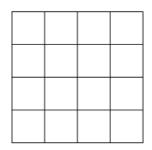
Le pavage est dit périodique s'il est globalement invariant par translation dans deux directions différentes.

Pavages par des polygones réguliers

Théorème de Pappus -300 Av JC

Tout pavage du plan par un seul polygone régulier est l'un des trois exemples classiques : triangulaire, carré, hexagonal.





Peut-on réaliser de tel pavage avec :

des triangles?

- des triangles? Oui (Facile)
- des quadrilatères?

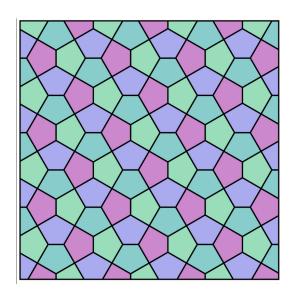
- des triangles? Oui (Facile)
- des quadrilatères? Oui (plutôt facile) Basé sur le théorème de Varignon 1650, les milieux des côtés d'un quadrilatère forment un parallélogramme)
- des hexagones?

- des triangles? Oui (Facile)
- des quadrilatères? Oui (plutôt facile) Basé sur le théorème de Varignon 1650, les milieux des côtés d'un quadrilatère forment un parallélogramme)
- des hexagones? Oui pour trois types d'hexagones, démonstration difficile, Karl Reinhardt 1918
- des pentagones?

- des triangles? Oui (Facile)
- des quadrilatères? Oui (plutôt facile) Basé sur le théorème de Varignon 1650, les milieux des côtés d'un quadrilatère forment un parallélogramme)
- des hexagones? Oui pour trois types d'hexagones, démonstration difficile, Karl Reinhardt 1918
- des pentagones? Oui pour 15 types de pentagones, démonstration très difficile, Michaël Rao 2017
- Des figures avec un plus grand nombre de côtés?

- des triangles? Oui (Facile)
- des quadrilatères? Oui (plutôt facile) Basé sur le théorème de Varignon 1650, les milieux des côtés d'un quadrilatère forment un parallélogramme)
- des hexagones? Oui pour trois types d'hexagones, démonstration difficile, Karl Reinhardt 1918
- des pentagones? Oui pour 15 types de pentagones, démonstration très difficile, Michaël Rao 2017
- Des figures avec un plus grand nombre de côtés? Non, plutôt facile! Démo un peu identique à celle de Pappus

Le pavage du Caire



Retour vers le passé.

Retour vers le passé.

Début du dixième siècle après Jésus Christ, les musulmans développent un art décoratif basé sur des mosaïques aux motifs géométriques complexes probablement inspiré de mosaïques romanes et byzantines.

Retour vers le passé.

Début du dixième siècle après Jésus Christ, les musulmans développent un art décoratif basé sur des mosaïques aux motifs géométriques complexes probablement inspiré de mosaïques romanes et byzantines.

Au 13ème siècle, cet art atteint sont apogé avec les magnifiques mosaïques de l'Alhambra à Grenade.

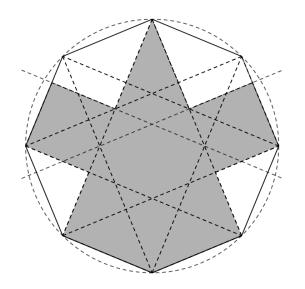
Retour vers le passé.

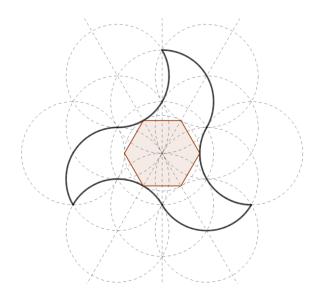
Début du dixième siècle après Jésus Christ, les musulmans développent un art décoratif basé sur des mosaïques aux motifs géométriques complexes probablement inspiré de mosaïques romanes et byzantines.

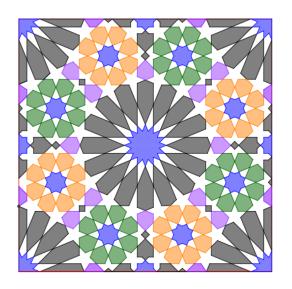
Au 13ème siècle, cet art atteint sont apogé avec les magnifiques mosaïques de l'Alhambra à Grenade.

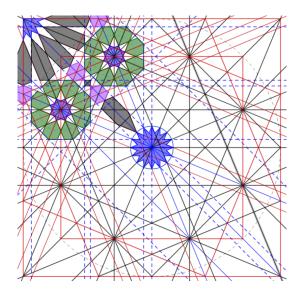
Ces motifs sont constructibles à la règle et au compas.











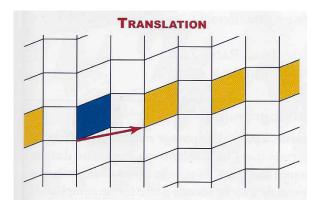
Classification des Pavages

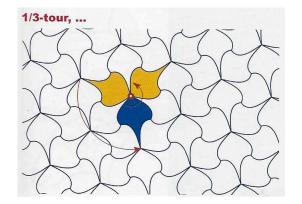
Théorème de Fédorov, 1891

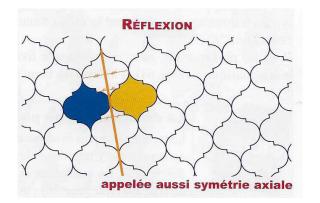
Il existe 17 différents "types" de Pavages

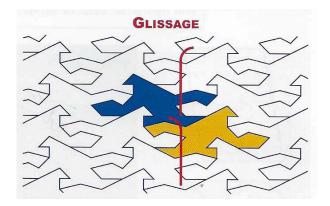
Remarque:

Ces 17 types de pavages se retrouvent pour 14 à l'Alhambra et les trois restants à Tolède, ils étaient donc tous connus de la civilisation musulmane









Classification des Pavages

Idées de la démonstration

Une autre vision de la géométrie initiée par Félix Klein, le programme d'Erlangen et la notion de groupe.

Le théorème de Fédorov devient alors, il y a 17 groupes d'isométries qui laissent invariant un pavage de plan.

Il faut débuter par les frises ce qui est plus simple que sur le plan (7 groupes).

Classification des Pavages

Idées de la démonstration

Une autre vision de la géométrie initiée par Félix Klein, le programme d'Erlangen et la notion de groupe.

Le théorème de Fédorov devient alors, il y a 17 groupes d'isométries qui laissent invariant un pavage de plan.

Il faut débuter par les frises ce qui est plus simple que sur le plan (7 groupes).

Exemple:

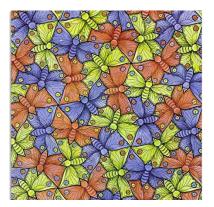
Le groupe de cristallographie est composé de :

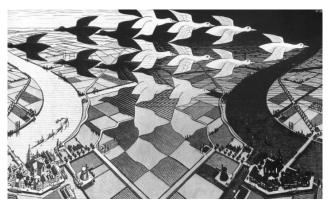
- Deux familles de translation
- Quatre familles de symétries centrales

Un algorithme de classification

Le pavage est-il identique à son image dans un miroir ?

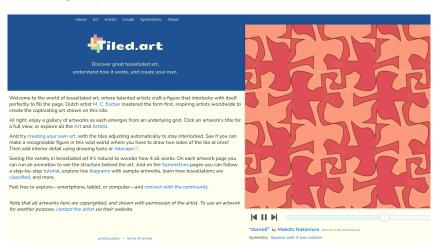
	Quel est la rotation d'angle minimal non nul du pavage ?					
Non	0			Parallélogramique asymétrique	p1	R0
	π			Parallélogramique symétrique	p2	R2
	$\frac{2\pi}{3}$			Hexagonal 3-rotatif	р3	R3
	$\frac{\pi}{2}$			Carré 4-rotatif	p4	R4
	$\frac{\pi}{3}$			Hexagonal 6-rotatif	p6	R6
	Combien y-a-t-'il de directions d'axes de symétrie ?					
Oui	0	Famille de rotation d'angle :	0	Rectangulaire glissant	pg	M0
	"		π	Rectangulaire biglissant	pgg	M0R2
		Famille de rotation d'angle :	0 sans glissage	Rectangulaire monosymétrique	pm	M1
	1		0 avec glissage	Rhombique monosymétrique	cm	M1g
			π	Rectangulaire glissant symétrique	pmg	M1R2
		Famille de rotation d'angle :	0	Rectangulaire bisymétrique	pmm	M2
	2		π	Rhombique bisymétrique	cmm	M2R2
			$\frac{\pi}{2}$	Carré 4-rotatif glissant	p4g	M2R4
	3	Famille de rotation d'angle :	0	Hégagonal tri-symétrique	p3m1	М3
			$\frac{2\pi}{3}$	Héxagonal 3-rotatif symétrique	p31m	M3R3
	4	Pas de rotation		Carré totalement symétrique	p4m	M4
	6	Pas de rotation		Hexagonal totalement symétrique	p6m	M6





Construire ses propres pavages périodiques

Un site magnifique : Tiled Art



Plan

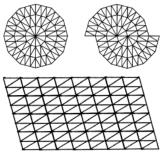
- Introduction
- Pavages Périodiques du Plar
- Pavages Apériodiques
- 4 Pour aller plus loin

Ensemble de pavages apériodiques

Définition

Un ensemble de pavage apériodique du plan est un ensemble de pavés conduisant uniquement à des pavages non périodiques du plan.

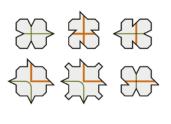
Par exemple ce pavage n'est pas apériodique

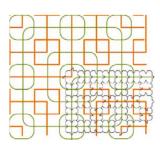


La course aux nombres de tuiles

Existe-t'il des ensembles de pavage apériodique du plan?

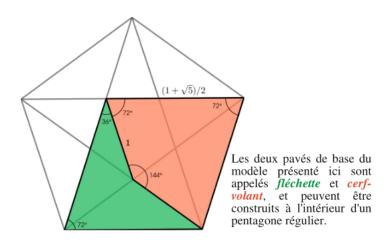
- 1964 Berger construit un ensemble de pavage apériodique de 20 426 tuiles
- 1971 Robinson utilise 6 tuiles





1974 Penrose utilise 2 tuiles

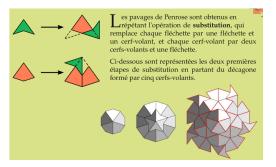
Pavage de Penrose



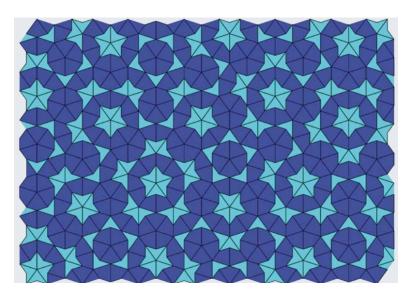
Pavage de Penrose, idées de la démonstration

Méthode : A t'on un ensemble de pavage apériodique ?

- Il faut trouver une méthode de construction du pavage : ici principe de substitution
- Il faut expliquer qu'il n'existe pas de pavage périodique avec les mêmes pièces : ici irrationalité des longueurs de la pièce



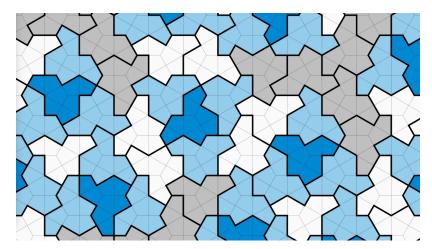
Pavage de Penrose



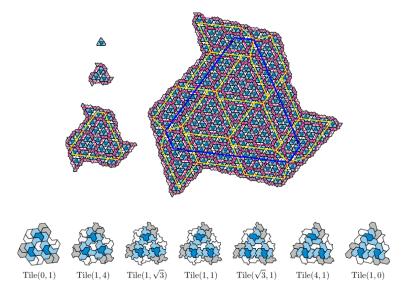
Des pavages sur du papier toilette

Le Grall: Einstein Tile

Découvert par D. Smith démontré par Myers, Kaplan et Goodman-Strauss 2022



Einstein Tile, idée de la démo

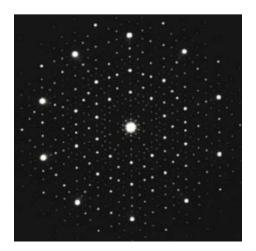


Plan

- Introduction
- Pavages Périodiques du Plar
- Pavages Apériodiques
- Pour aller plus loin

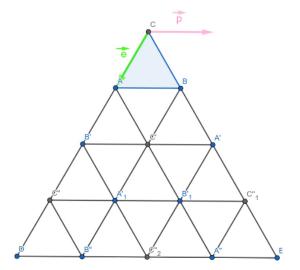
Application 1

Quasi-Cristaux : Découverts par D. Shechtman en 1982, prix nobel de chimie 2011



Application 2

Clin d'oeil à \mathbb{TFJM}^2 , trajectoires dans un billard triangulaire.



Ouvertures

Pavages semi-regulier 7 types de pavages avec plusieurs polygones régulier.

Pavages en 3D ightarrow 235 types de pavages .

Pavage avec des fractales flocons de Von koch.

Pavages Hyperboliques.

Références

[Harp] Pierre de la Harpe. Pavages |Ghy| E. Ghys L'énigme des pentagones, Images des Maths [Chro] S Mehl Chronomaths, article sur les pavages [Vel] M. Vella L'Alhambra à la règle est au compas [Kang] A. Deledicq, R. Raba, Le monde des pavages [Del] J-Paul Delahaye, la quête du pavage apériodique unique [Einst] D Smith, J.S Myers, C.S Kaplan, C Goodman-Strauss An periodic monotile

Merci pour votre écoute!

Diaporama de la conférence en libre accès, modifiable ici :

